Variable step search algorithm for feedforward networks

نویسندگان

  • Miroslaw Kordos
  • Wlodzislaw Duch
چکیده

A new class of search-based training algorithms for feedforward networks is introduced. These algorithms do not calculate analytical gradients and do not use stochastic or genetic search techniques. The forward step is performed to calculate error in response to localized weight changes using systematic search techniques. One of the simplest variants of this type of algorithms, the Variable Step Search (VSS) algorithm, is studied in details. The VSS search procedure changes one network parameter at a time and thus does not impose any restrictions on the network structure or the type of transfer functions. Rough approximation to the gradient direction and the determination of the optimal step along this direction to find the minimum of error are performed simultaneously. Modifying the value of a single weight changes the signals only in a small fragment of the network, allowing for efficient calculations of contributions to errors. Several heuristics are discussed to increase the efficiency of VSS algorithm. Tests on benchmark data show that VSS can outperform such renown algorithms as the Levenberg-Marquardt or scaled conjugate gradient algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method

Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...

متن کامل

Using Feedforward Neural Networks and Forward Selection of Input Variables for an Ergonomics Data Classification Problem

A method was developed to accurately predict the risk of injuries in industrial jobs based on datasets not meeting the assumptions of parametric statistical tools, or being incomplete. Previous research used a backward-elimination process for feedforward neural network (FNN) input variable selection. Simulated annealing (SA) was used as a local search method in conjunction with a conjugate-grad...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008